Skip to main content\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}}
\newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X}
\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} }
\newcommand{\emx}{\end{array}\hskip -3pt\right]}
\newcommand{\ds}{\displaystyle}
\newcommand{\fp}{f'}
\newcommand{\fpp}{f''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}}
\newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}}
\newcommand{\infser}[1][1]{\sum_{n=#1}^\infty}
\newcommand{\primeskip}{\hskip.75pt}
\newcommand{\Fp}{F\primeskip'}
\newcommand{\Fpp}{F\primeskip''}
\newcommand{\yp}{y\primeskip'}
\newcommand{\gp}{g\primeskip'}
\newcommand{\dx}{\Delta x}
\newcommand{\dy}{\Delta y}
\newcommand{\ddz}{\Delta z}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\snorm}[1]{\left|\left|\,#1\,\right|\right|}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\dotp}[2]{\vec #1 \cdot \vec #2}
\newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\hat\imath}
\newcommand{\vecj}{\hat\jmath}
\newcommand{\veck}{\hat{k}}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\vrp}{\vec r\primeskip '}
\newcommand{\vrpp}{\vec r\primeskip ''}
\newcommand{\vsp}{\vec s\primeskip '}
\newcommand{\vrt}{\vec r(t)}
\newcommand{\vst}{\vec s(t)}
\newcommand{\vvt}{\vec v(t)}
\newcommand{\vat}{\vec a(t)}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\pz}{\partial z}
\newcommand{\pf}{\partial f}
\newcommand{\unittangent}{\vec{T}}
\newcommand{\unitnormal}{\vec{N}}
\newcommand{\unittangentprime}{\vec{T}\primeskip '}
\newcommand{\mathN}{\mathbb{N}}
\newcommand{\surfaceS}{\mathcal{S}}
\newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}}
\newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2}
\newcommand{\myint}[2]{\myds\int #1\, dx= {\ds #2}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\curl}{\operatorname{curl}}
\newcommand{\divv}{\operatorname{div}}
\newcommand{\Hess}{\operatorname{Hess}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection A.1 Trigonometry
The Unit Circle.
Unit Circle Definitions of the Trigonometric Functions.
\(\sin \theta = y\) |
\(\cos \theta = x\) |
\(\displaystyle \csc \theta = \frac{1}{y}\) |
\(\displaystyle \sec \theta = \frac{1}{x}\) |
\(\displaystyle \tan \theta = \frac{y}{x}\) |
\(\displaystyle \cot \theta = \frac{x}{y}\) |
Table A.1.14.
Right Triangle Definition of the Trigonometric Functions.
\(\displaystyle \sin \theta = \frac{\text{O}}{\text{H}}\) |
\(\displaystyle \csc \theta = \frac{\text{H}}{\text{O}}\) |
|
\(\displaystyle \cos \theta = \frac{\text{A}}{\text{H}}\) |
\(\displaystyle \sec \theta = \frac{\text{H}}{\text{A}}\) |
|
\(\displaystyle \tan \theta = \frac{\text{O}}{\text{A}}\) |
\(\displaystyle \cot \theta = \frac{\text{A}}{\text{O}}\) |
Table A.1.15.
Subsubsection A.1.1 Pythagorean Identities
\(\displaystyle \displaystyle \sin ^2x+\cos ^2x= 1\)
\(\displaystyle \displaystyle \tan ^2x+ 1 = \sec ^2 x\)
\(\displaystyle \displaystyle 1 + \cot ^2x=\csc ^2 x\)
Subsubsection A.1.2 Cofunction Identities
\(\displaystyle \displaystyle \sin \left(\frac{\pi }{2}-x\right) = \cos x\)
\(\displaystyle \displaystyle \cos \left(\frac{\pi }{2}-x\right) = \sin x\)
\(\displaystyle \displaystyle \tan \left(\frac{\pi }{2}-x\right) = \cot x\)
\(\displaystyle \displaystyle \csc \left(\frac{\pi }{2}-x\right) = \sec x\)
\(\displaystyle \displaystyle \sec \left(\frac{\pi }{2}-x\right) = \csc x\)
\(\displaystyle \displaystyle \cot \left(\frac{\pi }{2}-x\right) = \tan x\)
Subsubsection A.1.3 Double Angle Formulas
\(\displaystyle \sin 2x = 2\sin x\cos x\)
\(\displaystyle \begin{array}{l}
\cos 2x = \cos ^2x - \sin ^2 x \\
\phantom{\cos 2x}= 2\cos ^2x-1 \\
\phantom{\cos 2x}= 1-2\sin ^2x
\end{array}\)
\(\displaystyle \displaystyle \tan 2x = \frac{2\tan x}{1-\tan ^2 x}\)
Subsubsection A.1.4 Sum to Product Formulas
\(\displaystyle \displaystyle \sin x+\sin y = 2\sin \left(\frac{x+y}{2}\right)\cos \left(\frac{x-y}{2}\right)\)
\(\displaystyle \displaystyle \sin x-\sin y = 2\sin \left(\frac{x-y}{2}\right)\cos \left(\frac{x+y}{2}\right)\)
\(\displaystyle \displaystyle \cos x+\cos y = 2\cos \left(\frac{x+y}{2}\right)\cos \left(\frac{x-y}{2}\right)\)
\(\displaystyle \displaystyle \cos x-\cos y = -2\sin \left(\frac{x+y}{2}\right)\sin \left(\frac{x-y}{2}\right)\)
Subsubsection A.1.5 Power–Reducing Formulas
\(\displaystyle \displaystyle \sin ^2 x = \frac{1-\cos 2x}{2}\)
\(\displaystyle \displaystyle \cos ^2 x = \frac{1+\cos 2x}{2}\)
\(\displaystyle \displaystyle \tan ^2x = \frac{1-\cos 2x}{1+\cos 2x}\)
Subsubsection A.1.6 Even/Odd Identities
\(\displaystyle \sin (-x) = -\sin x\)
\(\displaystyle \cos (-x) = \cos x\)
\(\displaystyle \tan (-x) = -\tan x\)
\(\displaystyle \csc (-x) = -\csc x\)
\(\displaystyle \sec (-x) = \sec x\)
\(\displaystyle \cot (-x) = -\cot x\)
Subsubsection A.1.7 Product to Sum Formulas
\(\displaystyle \displaystyle \sin x\sin y = \frac{1}{2} \big (\cos (x-y) - \cos (x+y)\big )\)
\(\displaystyle \displaystyle \cos x\cos y = \frac{1}{2}\big (\cos (x-y) +\cos (x+y)\big )\)
\(\displaystyle \displaystyle \sin x\cos y = \frac{1}{2} \big (\sin (x+y) + \sin (x-y)\big )\)
Subsubsection A.1.8 Angle Sum/Difference Formulas
\(\displaystyle \sin (x\pm y) = \sin x\cos y \pm \cos x\sin y\)
\(\displaystyle \cos (x\pm y) = \cos x\cos y \mp \sin x\sin y\)
\(\displaystyle \displaystyle \tan (x\pm y) = \frac{\tan x\pm \tan y}{1\mp \tan x\tan y}\)