Skip to main content
Logo image

Calculus at Moravian University

Subsection A.6 Integration Rules

Subsubsection A.6.1 Basic Rules

  1. \(\displaystyle \int c\cdot f(x)\ dx=\) \(\displaystyle c\int f(x)\ dx\)
  2. \(\displaystyle \int f(x)\pm g(x)\ dx=\) \(\displaystyle \) \(\displaystyle \int f(x)\ dx \pm \int g(x)\ dx\)
  3. \(\displaystyle \int 0\ dx=\) \(\displaystyle C\)
  4. \(\displaystyle \int 1\ dx=\) \(\displaystyle x+C\)
  5. \(\displaystyle \int x^n\ dx=\) \(\displaystyle \frac{1}{n+1}x^{n+1}+C, \ n\ne -1\)
  6. \(\displaystyle \int e^x\ dx=\) \(\displaystyle e^x+C\)
  7. \(\displaystyle \int a^x\ dx=\) \(\displaystyle \frac{1}{\ln a}\cdot a^x+C\)
  8. \(\displaystyle \int \frac{1}{x}\ dx=\) \(\displaystyle \ln |x| + C\)

Subsubsection A.6.2 Trigonometric Functions

  1. \(\displaystyle \int \cos x\ dx=\) \(\displaystyle \sin x+C\)
  2. \(\displaystyle \int \sin x\ dx=\) \(\displaystyle -\cos x+C\)
  3. \(\displaystyle \int \tan x\ dx=\) \(\displaystyle -\ln |\cos x|+C\)
  4. \(\displaystyle \int \sec x\ dx=\) \(\displaystyle \ln |\sec x+\tan x|+C\)
  5. \(\displaystyle \int \csc x\ dx=\) \(\displaystyle -\ln |\csc x+\cot x|+C\)
  6. \(\displaystyle \int \cot x\ dx=\) \(\displaystyle \ln |\sin x|+C\)
  7. \(\displaystyle \int \sec ^2 x\ dx=\) \(\displaystyle \tan x+C\)
  8. \(\displaystyle \int \csc ^2x\ dx=\) \(\displaystyle -\cot x+C\)
  9. \(\displaystyle \int \sec x\tan x\ dx=\) \(\displaystyle \sec x+C\)
  10. \(\displaystyle \int \csc x\cot x\ dx=\) \(\displaystyle -\csc x+C\)
  11. \(\displaystyle \int \cos ^2x\ dx=\) \(\displaystyle \frac{1}{2}x+\frac{1}{4}\sin \big (2x\big )+C\)
  12. \(\displaystyle \int \sin ^2x\ dx=\) \(\displaystyle \frac{1}{2}x-\frac{1}{4}\sin \big (2x\big )+C\)

Subsubsection A.6.3 Common Trig Substitutions

  1. \(\displaystyle \int \frac{1}{x^2+a^2}\ dx=\) \(\displaystyle \frac{1}{a}\tan ^{-1}\left(\frac{x}{a}\right)+C\)
  2. \(\displaystyle \int \frac{1}{\sqrt{a^2-x^2}}\ dx=\) \(\displaystyle \sin ^{-1}\left(\frac{x}{a}\right)+C\)
  3. \(\displaystyle \int \frac{1}{x\sqrt{x^2-a^2}}\ dx=\) \(\displaystyle \frac{1}{a}\sec ^{-1}\left(\frac{x}{a}\right)+C\)
  4. \(\displaystyle \int \frac{1}{\sqrt{x^2-a^2}}\ dx=\) \(\displaystyle \ln \big |x+\sqrt{x^2-a^2}\big |+C\)
  5. \(\displaystyle \int \frac{1}{\sqrt{x^2+a^2}}\ dx=\) \(\displaystyle \ln \big |x+\sqrt{x^2+a^2}\big |+C\)
  6. \(\displaystyle \int \frac{1}{a^2-x^2}\ dx=\) \(\displaystyle \frac{1}{2}\ln \left|\frac{a+x}{a-x}\right|+C\)
  7. \(\displaystyle \int \frac{1}{x\sqrt{a^2-x^2}}\ dx=\) \(\displaystyle \frac{1}{a}\ln \left(\frac{x}{a+\sqrt{a^2-x^2}}\right)+C\)
  8. \(\displaystyle \int \frac{1}{x\sqrt{x^2+a^2}}\ dx=\) \(\displaystyle \frac{1}{a}\ln \left|\frac{x}{a+\sqrt{x^2+a^2}}\right|+C\)

Subsubsection A.6.4 Hyperbolic Trigonometric Functions

  1. \(\displaystyle \int \cosh x\ dx=\) \(\displaystyle \sinh x+C\)
  2. \(\displaystyle \int \sinh x\ dx=\) \(\displaystyle \cosh x+C\)
  3. \(\displaystyle \int \tanh x\ dx=\) \(\displaystyle \ln (\cosh x)+C\)
  4. \(\displaystyle \int \coth x\ dx=\) \(\displaystyle \ln |\sinh x|+C\)