Skip to main content ☰ Contents Index Calc
You! < Prev ^ Up Next > \(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}}
\newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X}
\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} }
\newcommand{\emx}{\end{array}\hskip -3pt\right]}
\newcommand{\ds}{\displaystyle}
\newcommand{\fp}{f'}
\newcommand{\fpp}{f''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}}
\newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}}
\newcommand{\infser}[1][1]{\sum_{n=#1}^\infty}
\newcommand{\primeskip}{\hskip.75pt}
\newcommand{\Fp}{F\primeskip'}
\newcommand{\Fpp}{F\primeskip''}
\newcommand{\yp}{y\primeskip'}
\newcommand{\gp}{g\primeskip'}
\newcommand{\dx}{\Delta x}
\newcommand{\dy}{\Delta y}
\newcommand{\ddz}{\Delta z}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\snorm}[1]{\left|\left|\,#1\,\right|\right|}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\dotp}[2]{\vec #1 \cdot \vec #2}
\newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\hat\imath}
\newcommand{\vecj}{\hat\jmath}
\newcommand{\veck}{\hat{k}}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\vrp}{\vec r\primeskip '}
\newcommand{\vrpp}{\vec r\primeskip ''}
\newcommand{\vsp}{\vec s\primeskip '}
\newcommand{\vrt}{\vec r(t)}
\newcommand{\vst}{\vec s(t)}
\newcommand{\vvt}{\vec v(t)}
\newcommand{\vat}{\vec a(t)}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\pz}{\partial z}
\newcommand{\pf}{\partial f}
\newcommand{\unittangent}{\vec{T}}
\newcommand{\unitnormal}{\vec{N}}
\newcommand{\unittangentprime}{\vec{T}\primeskip '}
\newcommand{\mathN}{\mathbb{N}}
\newcommand{\surfaceS}{\mathcal{S}}
\newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}}
\newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2}
\newcommand{\myint}[2]{\myds\int #1\, dx= {\ds #2}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\curl}{\operatorname{curl}}
\newcommand{\divv}{\operatorname{div}}
\newcommand{\Hess}{\operatorname{Hess}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection A.3 Algebra
Factors and Zeros of Polynomials.
Let \(p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0\) be a polynomial. If \(p(a)=0\text{,}\) then \(a\) is a \(zero\) of the polynomial and a solution of the equation \(p(x)=0\text{.}\) Furthermore, \((x-a)\) is a \(factor\) of the polynomial.
Fundamental Theorem of Algebra.
An \(n\) th degree polynomial has \(n\) (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.
Quadratic Formula.
If \(p(x) = ax^2 + bx + c\text{,}\) and \(0 \le b^2 - 4ac\text{,}\) then the real zeros of \(p\) are \(x=(-b\pm \sqrt{b^2-4ac})/2a\)
Special Factors.
\(\begin{array}{ll} x^2 - a^2 = (x-a)(x+a) & x^3 - a^3 = (x-a)(x^2+ax+a^2)\\ x^3 + a^3 = (x+a)(x^2-ax+a^2) \quad & x^4 - a^4 = (x^2-a^2)(x^2+a^2)\\ \end{array} \)
\(\begin{array}{l} (x+y)^n =x^n + nx^{n-1}y+\frac{n(n-1)}{2!}x^{n-2}y^2+\cdots +nxy^{n-1}+y^n\\ (x-y)^n =x^n - nx^{n-1}y+\frac{n(n-1)}{2!}x^{n-2}y^2-\cdots \pm nxy^{n-1}\mp y^n \end{array}\)
Binomial Theorem.
\(\begin{array}{l}
(x+y)^2 = x^2 + 2xy + y^2 \\
(x-y)^2 = x^2 -2xy +y^2 \\ \\
(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 \qquad \\
(x-y)^3 = x^3 -3x^2y + 3xy^2 -y^3\\ \\
(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \qquad \\
(x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4\\
\end{array} \)
Rational Zero Theorem.
If \(p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0\) has integer coefficients, then every \(rational\) \(zero\) of \(p\) is of the form \(x=r/s\text{,}\) where \(r\) is a factor of \(a_0\) and \(s\) is a factor of \(a_n\text{.}\)
Arithmetic Operations.
\(\begin{array}{ll}
ab+ac=a(b+c) \qquad \qquad & \displaystyle \frac{a}{b}+\frac{c}{d} = \frac{ad+bc}{bd} \\ \\
\displaystyle \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c} & \displaystyle \frac{\left(\displaystyle \frac{a}{b}\right)}{\left(\displaystyle \frac{c}{d}\right)}=\left(\frac{a}{b}\right)\left(\frac{d}{c}\right)=\frac{ad}{bc} \\ \\
\displaystyle \frac{\left(\displaystyle \frac{a}{b}\right)}{c} =\displaystyle \frac{a}{bc} &\displaystyle \frac{a}{\left(\displaystyle \frac{b}{c}\right)} =\displaystyle \frac{ac}{b} \\ \\
a\left(\displaystyle \frac{b}{c}\right)= \displaystyle \frac{ab}{c} &\displaystyle \frac{a-b}{c-d}=\frac{b-a}{d-c} \\ \\
\displaystyle \frac{ab+ac}{a}=b+c\\
\end{array} \)
Exponents and Radicals.
\(\begin{array}{lll}
a^0=1, \; a \ne 0 \quad & (ab)^x=a^xb^x \quad & a^xa^y = a^{x+y} \\ \\
\sqrt{a}=a^{1/2} &\displaystyle \frac{a^x}{a^y}=a^{x-y} & \sqrt[n]{a}=a^{1/n} \\ \\
\left(\displaystyle \frac{a}{b}\right)^x=\displaystyle \frac{a^x}{b^x} &\sqrt[n]{a^m}=a^{m/n} & a^{-x}=\displaystyle \frac{1}{a^x} \\ \\
\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} & (a^x)^y=a^{xy} & \displaystyle \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\end{array} \)