Skip to main content\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}}
\newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X}
\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} }
\newcommand{\emx}{\end{array}\hskip -3pt\right]}
\newcommand{\ds}{\displaystyle}
\newcommand{\fp}{f'}
\newcommand{\fpp}{f''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}}
\newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}}
\newcommand{\infser}[1][1]{\sum_{n=#1}^\infty}
\newcommand{\primeskip}{\hskip.75pt}
\newcommand{\Fp}{F\primeskip'}
\newcommand{\Fpp}{F\primeskip''}
\newcommand{\yp}{y\primeskip'}
\newcommand{\gp}{g\primeskip'}
\newcommand{\dx}{\Delta x}
\newcommand{\dy}{\Delta y}
\newcommand{\ddz}{\Delta z}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\snorm}[1]{\left|\left|\,#1\,\right|\right|}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\dotp}[2]{\vec #1 \cdot \vec #2}
\newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\hat\imath}
\newcommand{\vecj}{\hat\jmath}
\newcommand{\veck}{\hat{k}}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\vrp}{\vec r\primeskip '}
\newcommand{\vrpp}{\vec r\primeskip ''}
\newcommand{\vsp}{\vec s\primeskip '}
\newcommand{\vrt}{\vec r(t)}
\newcommand{\vst}{\vec s(t)}
\newcommand{\vvt}{\vec v(t)}
\newcommand{\vat}{\vec a(t)}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\pz}{\partial z}
\newcommand{\pf}{\partial f}
\newcommand{\unittangent}{\vec{T}}
\newcommand{\unitnormal}{\vec{N}}
\newcommand{\unittangentprime}{\vec{T}\primeskip '}
\newcommand{\mathN}{\mathbb{N}}
\newcommand{\surfaceS}{\mathcal{S}}
\newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}}
\newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2}
\newcommand{\myint}[2]{\myds\int #1\, dx= {\ds #2}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\curl}{\operatorname{curl}}
\newcommand{\divv}{\operatorname{div}}
\newcommand{\Hess}{\operatorname{Hess}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection A.4 Additional Formulas
Summation Formulas.
\(\begin{array}{ll}
\displaystyle \sum^n_{i=1}{c} = cn &
\displaystyle \sum^n_{i=1}{i} = \frac{n(n+1)}{2} \\ \\
\displaystyle \sum^n_{i=1}{i\hspace{1.0pt}^2} = \frac{n(n+1)(2n+1)}{6} \quad&
\displaystyle \sum^n_{i=1}{i\hspace{1.0pt}^3}= \left(\frac{n(n+1)}{2}\right)^2 \\
\end{array}\)
Trapezoidal Rule:.
\(\displaystyle \int _a^b{f(x)}\ dx \approx \frac{\Delta x}{2}\big [f(x_1)+2f(x_2) + 2f(x_3) + ... + 2f(x_{n}) + f(x_{n+1})\big ]\)
with \(\displaystyle \text{Error} \le \frac{(b-a)^3}{12n^2}\big [ \max \big | f^{\prime \prime }(x) \big |\big ]\)
Simpson’s Rule.
\(\displaystyle \int _a^b{f(x)}\ dx \approx \frac{\Delta x}{3}\big [f(x_1)+4f(x_2) + 2f(x_3) + 4f(x_4) + ... + 2f(x_{n-1}) + 4f(x_{n}) + f(x_{n+1})\big ] \)
with \(\displaystyle \text{Error} \le \frac{(b-a)^5}{180n^4}\big [ \max \big | f^{(4)}(x) \big |\big ] \)
Arc Length.
\(\displaystyle L = \int _a^b{\sqrt{1+ f\,^{\prime }(x)^2}}\phantom{a}dx \)
Surface of Revolution.
\(\displaystyle S = 2\pi \int _a^b{f(x) \sqrt{1+ f\,^{\prime }(x)^2}}\phantom{a}dx \)
(where \(f(x)\ge 0\))
\(\displaystyle S = 2\pi \int _a^b{x \sqrt{1+ f\,^{\prime }(x)^2}}\phantom{a}dx \)
(where \(a,b \ge 0\))
Work Done by a Variable Force.
\(\displaystyle W = \int _a^b{F(x)}\phantom{a}dx \)
Force Exerted by a Fluid:.
\(\displaystyle F = \int _a^b{w\,d(y)\,\ell (y)}\phantom{a}dy \)
Taylor Series Expansion for \(f(x)\).
\(\displaystyle p_n(x) = f(c) + f\,^{\prime }(c)(x-c) + \frac{f\,^{\prime \prime }(c)}{2!}(x-c)^2 + \frac{f\,^{\prime \prime \prime }(c)}{3!}(x-c)^3 + ... + \frac{f\,^{(n)}(c)}{n!}(x-c)^n \)
Maclaurin Series Expansion for \(f(x)\).
\(\displaystyle p_n(x) = f(0) + f\,^{\prime }(0)x + \frac{f\,^{\prime \prime }(0)}{2!}x^2 + \frac{f\,^{\prime \prime \prime }(0)}{3!}x^3 + ... + \frac{f\,^{(n)}(0)}{n!}x^n \)