Skip to main content\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}}
\newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X}
\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} }
\newcommand{\emx}{\end{array}\hskip -3pt\right]}
\newcommand{\ds}{\displaystyle}
\newcommand{\fp}{f'}
\newcommand{\fpp}{f''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}}
\newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}}
\newcommand{\infser}[1][1]{\sum_{n=#1}^\infty}
\newcommand{\primeskip}{\hskip.75pt}
\newcommand{\Fp}{F\primeskip'}
\newcommand{\Fpp}{F\primeskip''}
\newcommand{\yp}{y\primeskip'}
\newcommand{\gp}{g\primeskip'}
\newcommand{\dx}{\Delta x}
\newcommand{\dy}{\Delta y}
\newcommand{\ddz}{\Delta z}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\snorm}[1]{\left|\left|\,#1\,\right|\right|}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\dotp}[2]{\vec #1 \cdot \vec #2}
\newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\hat\imath}
\newcommand{\vecj}{\hat\jmath}
\newcommand{\veck}{\hat{k}}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\vrp}{\vec r\primeskip '}
\newcommand{\vrpp}{\vec r\primeskip ''}
\newcommand{\vsp}{\vec s\primeskip '}
\newcommand{\vrt}{\vec r(t)}
\newcommand{\vst}{\vec s(t)}
\newcommand{\vvt}{\vec v(t)}
\newcommand{\vat}{\vec a(t)}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\pz}{\partial z}
\newcommand{\pf}{\partial f}
\newcommand{\unittangent}{\vec{T}}
\newcommand{\unitnormal}{\vec{N}}
\newcommand{\unittangentprime}{\vec{T}\primeskip '}
\newcommand{\mathN}{\mathbb{N}}
\newcommand{\surfaceS}{\mathcal{S}}
\newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}}
\newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2}
\newcommand{\myint}[2]{\myds\int #1\, dx= {\ds #2}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\curl}{\operatorname{curl}}
\newcommand{\divv}{\operatorname{div}}
\newcommand{\Hess}{\operatorname{Hess}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection A.7 Summary of Tests for Series
Test for Divergence.
\(\displaystyle {\sum ^\infty _{n=1}{a_n}}\)
Diverges if \(\displaystyle {\lim _{n \rightarrow \infty } a_n \ne 0}\)
Note: This test cannot be used to show convergence.
Geometric Series.
\(\displaystyle {\sum ^\infty _{n=0}{r^n}}\)
Converges if \(\left| r \right| \lt 1\)
Diverges if \(\left| r \right| \lt 1\)
Note: When convergent, \(\displaystyle {\text{Sum} = \frac{1}{1-r}}\)
Telescoping Series.
\(\displaystyle {\sum ^\infty _{n=1}{(b_n-b_{n+a})}}\)
Converges if \(\displaystyle {\lim _{n \rightarrow \infty } b_n = L}\)
Note: When convergent, \(\displaystyle \text{Sum}= \left(\sum ^a_{n=1}b_n\right) -L\)
\(p\)-Series.
\(\displaystyle {\sum ^\infty _{n=1}{\frac{1}{(an+b)^p}}}\)
Converges if \(p\gt1\)
Diverges if \(p\le 1\)
Integral Test.
\(\displaystyle {\sum ^\infty _{n=0}{a_n}}\)
Converges if \(\displaystyle \int _1^\infty a(n)\ dn\) is convergent
Diverges if \(\displaystyle \int _1^\infty a(n)\ dn\) is divergent
Note: \(a_n = a(n)\) must be continuous.
Direct Comparison.
\(\displaystyle {\sum ^\infty _{n=0}{a_n}}\)
Converges if \(\displaystyle \sum _{n=0}^\infty b_n \) converges and \(0\le a_n\le b_n\)
Diverges if \(\displaystyle \sum _{n=0}^\infty b_n \) diverges and \(0\le b_n\le a_n\)
Limit Comparison.
\(\displaystyle {\sum ^\infty _{n=0}{a_n}}\)
Converges if \(\displaystyle \sum _{n=0}^\infty b_n \) converges and \(\displaystyle \lim _{n\rightarrow \infty } a_n/b_n \ge 0\)
Diverges if \(\displaystyle \sum _{n=0}^\infty b_n \) diverges and \(\displaystyle \lim _{n\rightarrow \infty } a_n/b_n \gt 0\)
Ratio Test.
\(\displaystyle {\sum ^\infty _{n=0}{a_n}}\)
Converges if \(\displaystyle \lim _{n\rightarrow \infty } \frac{a_{n+1}}{a_n} \lt 1\)
Diverges if \(\displaystyle \lim _{n\rightarrow \infty } \frac{a_{n+1}}{a_n} \gt 1\)
Note: \(\lbrace a_n\rbrace \) must be positive. Also diverges if \(\displaystyle \lim _{n\rightarrow \infty } a_{n+1}/a_n=\infty \text{.}\)
Root Test.
\(\displaystyle {\sum ^\infty _{n=0}{a_n}}\)
Converges if \(\displaystyle \lim _{n\rightarrow \infty } \big (a_n\big )^{1/n} \lt 1\)
Diverges if \(\displaystyle \lim _{n\rightarrow \infty } \big (a_n\big )^{1/n} \gt 1\)
Note: \(\lbrace a_n\rbrace \) must be positive. Also diverges if \(\displaystyle \lim _{n\rightarrow \infty } \big (a_n\big )^{1/n}=\infty \text{.}\)