Skip to main content
Logo image

Calculus at Moravian University

Section 6.8 Additional Exercise

These problems require the techniques of this chapter, and are in no particular order. Some problems may be done in more than one way.

Exercises Exercises

1.

\(\ds\int (t+4)^3\,dt\)
Answer.
\(\ds{(t+4)^4\over4}+C\)

2.

\(\ds\int t(t^2-9)^{3/2}\,dt\)
Answer.
\(\ds{(t^2-9)^{5/2}\over5}+C\)

3.

\(\ds\int (e^{t^2}+16)te^{t^2}\,dt\)
Answer.
\(\ds{(e^{t^2}+16)^2\over 4}+C\)

4.

\(\ds\int \sin t\cos 2t\,dt\)
Answer.
\(\ds\cos t-{2\over3}\cos^3 t+C\)

5.

\(\ds\int \tan t\sec^2t\,dt\)
Answer.
\(\ds{\tan^2 t\over 2}+C\)

6.

\(\ds\int {2t+1\over t^2+t+3}\,dt\)
Answer.
\(\ds\ln|t^2+t+3|+C\)

7.

\(\ds\int {1\over t(t^2-4)}\,dt\)
Answer.
\(\ds {1\over8} \ln|1-4/t^2|+C\)

8.

\(\ds\int {1\over (25-t^2)^{3/2}}\,dt\)
Answer.
\(\ds{1\over25}\tan(\arcsin(t/5))+C={t\over25\sqrt{25-t^2}}+C\)

9.

\(\ds\int {\cos 3t\over\sqrt{\sin3t}}\,dt\)
Answer.
\(\ds{2\over3}\sqrt{\sin 3t}+C\)

10.

\(\ds\int t\sec^2 t\,dt\)
Answer.
\(\ds t\tan t+\ln|\cos t|+C\)

11.

\(\ds\int {e^t\over \sqrt{e^t+1}}\,dt\)
Answer.
\(\ds 2\sqrt{e^t+1}+C\)

12.

\(\ds\int \cos^4 t\,dt\)
Answer.
\(\ds{3t\over 8}+{\sin 2t\over4}+ {\sin 4t\over 32}+C\)

13.

\(\ds\int {1\over t^2+3t}\,dt\)
Answer.
\(\ds{\ln |t|\over 3} - {\ln |t+3|\over 3}+C\)

14.

\(\ds\int {1\over t^2\sqrt{1+t^2}}\,dt\)
Answer.
\(\ds{-1\over \sin\arctan t}+C=-\sqrt{1+t^2}/t+C\)

15.

\(\ds\int {\sec^2t\over (1+\tan t)^3}\,dt\)
Answer.
\(\ds{-1\over 2(1+\tan t)^2}+C\)

16.

\(\ds\int t^3\sqrt{t^2+1}\,dt\)
Answer.
\(\ds{(t^2+1)^{5/2}\over 5}-{(t^2+1)^{3/2}\over 3}+C\)

17.

\(\ds\int e^t\sin t\,dt\)
Answer.
\(\ds{e^t\sin t-e^t\cos t\over 2}+C\)

18.

\(\ds\int (t^{3/2}+47)^3\sqrt{t}\,dt\)
Answer.
\(\ds{(t^{3/2}+47)^4\over6}+C\)

19.

\(\ds\int {t^3\over (2-t^2)^{5/2}}\,dt\)
Answer.
\(\ds{2\over 3(2-t^2)^{3/2}}-{1\over(2-t^2)^{1/2}}+C\)

20.

\(\ds\int {1\over t(9+4t^2)}\,dt\)
Answer.
\(\ds{\ln|\sin(\arctan(2t/3))|\over9}+C = {\ln(4t^2)-\ln(9+4t^2)\over 18} + C\)

21.

\(\ds\int {\arctan 2t\over 1+4t^2}\,dt\)
Answer.
\(\ds{(\arctan(2t))^2\over4}+C\)

22.

\(\ds\int {t\over t^2+2t-3}\,dt\)
Answer.
\(\ds{3\ln|t+3|\over 4}+{\ln|t-1|\over4}+C\)

23.

\(\ds\int \sin^3 t\cos^4 t\,dt\)
Answer.
\(\ds{\cos^7 t\over 7}-{\cos^5 t\over 5}+C\)

24.

\(\ds\int {1\over t^2-6t+9}\,dt\)
Answer.
\(\ds{-1\over t-3}+C\)

25.

\(\ds\int {1\over t(\ln t)^2}\,dt\)
Answer.
\(\ds{-1\over \ln t}+C\)

26.

\(\ds\int t(\ln t)^2\,dt\)
Answer.
\(\ds{t^2(\ln t)^2\over 2}-{t^2\ln t\over 2}+{t^2\over4}+C\)

27.

\(\ds\int t^3e^{t}\,dt\)
Answer.
\(\ds(t^3-3t^2+6t-6)e^t+C\)

28.

\(\ds\int {t+1\over t^2+t-1}\,dt\)
Answer.
\(\ds{5+\sqrt5\over10} \ln(2t+1-\sqrt5)+{5-\sqrt5\over10}\ln(2t+1+\sqrt5)+C\)