Skip to main content\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}}
\newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X}
\newcommand{\colorlinecolor}{blue!95!black!30}
\newcommand{\bwlinecolor}{black!30}
\newcommand{\thelinecolor}{\colorlinecolor}
\newcommand{\colornamesuffix}{}
\newcommand{\linestyle}{[thick, \thelinecolor]}
\newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} }
\newcommand{\emx}{\end{array}\hskip -3pt\right]}
\newcommand{\ds}{\displaystyle}
\newcommand{\fp}{f'}
\newcommand{\fpp}{f''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}}
\newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}}
\newcommand{\infser}[1][1]{\sum_{n=#1}^\infty}
\newcommand{\primeskip}{\hskip.75pt}
\newcommand{\Fp}{F\primeskip'}
\newcommand{\Fpp}{F\primeskip''}
\newcommand{\yp}{y\primeskip'}
\newcommand{\gp}{g\primeskip'}
\newcommand{\dx}{\Delta x}
\newcommand{\dy}{\Delta y}
\newcommand{\ddz}{\Delta z}
\newcommand{\thet}{\theta}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert}
\newcommand{\snorm}[1]{\left|\left|\,#1\,\right|\right|}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\dotp}[2]{\vec #1 \cdot \vec #2}
\newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}}
\newcommand{\crossp}[2]{\vec #1 \times \vec #2}
\newcommand{\veci}{\hat\imath}
\newcommand{\vecj}{\hat\jmath}
\newcommand{\veck}{\hat{k}}
\newcommand{\vecu}{\vec u}
\newcommand{\vecv}{\vec v}
\newcommand{\vecw}{\vec w}
\newcommand{\vecx}{\vec x}
\newcommand{\vecy}{\vec y}
\newcommand{\vrp}{\vec r\primeskip '}
\newcommand{\vrpp}{\vec r\primeskip ''}
\newcommand{\vsp}{\vec s\primeskip '}
\newcommand{\vrt}{\vec r(t)}
\newcommand{\vst}{\vec s(t)}
\newcommand{\vvt}{\vec v(t)}
\newcommand{\vat}{\vec a(t)}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\pz}{\partial z}
\newcommand{\pf}{\partial f}
\newcommand{\unittangent}{\vec{T}}
\newcommand{\unitnormal}{\vec{N}}
\newcommand{\unittangentprime}{\vec{T}\primeskip '}
\newcommand{\mathN}{\mathbb{N}}
\newcommand{\surfaceS}{\mathcal{S}}
\newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}}
\newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2}
\newcommand{\myint}[2]{\myds\int #1\, dx= {\ds #2}}
\newcommand{\abs}[1]{\left\lvert #1\right\rvert}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\curl}{\operatorname{curl}}
\newcommand{\divv}{\operatorname{div}}
\newcommand{\Hess}{\operatorname{Hess}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.8 Additional Exercise
These problems require the techniques of this chapter, and are in no particular order. Some problems may be done in more than one way.
Exercises Exercises
1.
\(\ds\int (t+4)^3\,dt\)
2.
\(\ds\int t(t^2-9)^{3/2}\,dt\)
Answer.\(\ds{(t^2-9)^{5/2}\over5}+C\)
3.
\(\ds\int (e^{t^2}+16)te^{t^2}\,dt\)
Answer.\(\ds{(e^{t^2}+16)^2\over 4}+C\)
4.
\(\ds\int \sin t\cos 2t\,dt\)
Answer.\(\ds\cos t-{2\over3}\cos^3 t+C\)
5.
\(\ds\int \tan t\sec^2t\,dt\)
6.
\(\ds\int {2t+1\over t^2+t+3}\,dt\)
7.
\(\ds\int {1\over t(t^2-4)}\,dt\)
Answer.\(\ds {1\over8} \ln|1-4/t^2|+C\)
8.
\(\ds\int {1\over (25-t^2)^{3/2}}\,dt\)
Answer.\(\ds{1\over25}\tan(\arcsin(t/5))+C={t\over25\sqrt{25-t^2}}+C\)
9.
\(\ds\int {\cos 3t\over\sqrt{\sin3t}}\,dt\)
Answer.\(\ds{2\over3}\sqrt{\sin 3t}+C\)
10.
\(\ds\int t\sec^2 t\,dt\)
Answer.\(\ds t\tan t+\ln|\cos t|+C\)
11.
\(\ds\int {e^t\over \sqrt{e^t+1}}\,dt\)
12.
\(\ds\int \cos^4 t\,dt\)
Answer.\(\ds{3t\over 8}+{\sin 2t\over4}+ {\sin 4t\over 32}+C\)
13.
\(\ds\int {1\over t^2+3t}\,dt\)
Answer.\(\ds{\ln |t|\over 3} - {\ln |t+3|\over 3}+C\)
14.
\(\ds\int {1\over t^2\sqrt{1+t^2}}\,dt\)
Answer.\(\ds{-1\over \sin\arctan t}+C=-\sqrt{1+t^2}/t+C\)
15.
\(\ds\int {\sec^2t\over (1+\tan t)^3}\,dt\)
Answer.\(\ds{-1\over 2(1+\tan t)^2}+C\)
16.
\(\ds\int t^3\sqrt{t^2+1}\,dt\)
Answer.\(\ds{(t^2+1)^{5/2}\over 5}-{(t^2+1)^{3/2}\over 3}+C\)
17.
\(\ds\int e^t\sin t\,dt\)
Answer.\(\ds{e^t\sin t-e^t\cos t\over 2}+C\)
18.
\(\ds\int (t^{3/2}+47)^3\sqrt{t}\,dt\)
Answer.\(\ds{(t^{3/2}+47)^4\over6}+C\)
19.
\(\ds\int {t^3\over (2-t^2)^{5/2}}\,dt\)
Answer.\(\ds{2\over 3(2-t^2)^{3/2}}-{1\over(2-t^2)^{1/2}}+C\)
20.
\(\ds\int {1\over t(9+4t^2)}\,dt\)
Answer.\(\ds{\ln|\sin(\arctan(2t/3))|\over9}+C =
{\ln(4t^2)-\ln(9+4t^2)\over 18} + C\)
21.
\(\ds\int {\arctan 2t\over 1+4t^2}\,dt\)
Answer.\(\ds{(\arctan(2t))^2\over4}+C\)
22.
\(\ds\int {t\over t^2+2t-3}\,dt\)
Answer.\(\ds{3\ln|t+3|\over 4}+{\ln|t-1|\over4}+C\)
23.
\(\ds\int \sin^3 t\cos^4 t\,dt\)
Answer.\(\ds{\cos^7 t\over 7}-{\cos^5 t\over 5}+C\)
24.
\(\ds\int {1\over t^2-6t+9}\,dt\)
25.
\(\ds\int {1\over t(\ln t)^2}\,dt\)
26.
\(\ds\int t(\ln t)^2\,dt\)
Answer.\(\ds{t^2(\ln t)^2\over 2}-{t^2\ln t\over 2}+{t^2\over4}+C\)
27.
\(\ds\int t^3e^{t}\,dt\)
28.
\(\ds\int {t+1\over t^2+t-1}\,dt\)
Answer.\(\ds{5+\sqrt5\over10}
\ln(2t+1-\sqrt5)+{5-\sqrt5\over10}\ln(2t+1+\sqrt5)+C\)