Skip to main content
Logo image

Calculus at Moravian University

Subsection A.2 Areas and Volumes

Triangles.

\(h=a\sin \theta \)
Area = \(\frac{1}{2}bh\)
Law of Cosines: \(c^2=a^2+b^2-2ab\cos \theta \)

Right Circular Cone.

Volume = \(\frac{1}{3} \pi r^2h\)
Surface Area = \(\pi r\sqrt{r^2+h^2} +\pi r^2\)

Parallelograms.

Area = \(bh\)

Right Circular Cylinder.

Volume = \(\pi r^2h\)
Surface Area =
\(2\pi rh +2\pi r^2\)

Trapezoids.

Area = \(\frac{1}{2}(a+b)h\)

Sphere.

Sphere
Volume = \(\frac{4}{3}\pi r^3\)
Surface Area =\(4\pi r^2\)

Circles.

Area = \(\pi r^2\)
Circumference = \(2\pi r\)

General Cone.

Area of Base = \(A\)
Volume = \(\frac{1}{3}Ah\)

Sectors of Circles.

\(\theta \) in radians
Area = \(\frac{1}{2}\theta r^2\)
\(s=r\theta \)

General Right Cylinder.

Area of Base = \(A\)
Volume = \(Ah\)